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Abstract

Many studies have shown that discrete (blind) faults at depth are commonly linked to more distributed deformation, in particular folding, at

higher levels. One category of fault-related folds, forced folds, is common where there is a distinct mechanical contrast between faulted

basement and sedimentary cover. Outcrop, numerical and analogue modelling studies indicate that such folds form as upward widening

zones of distributed deformation (monoclines) above discrete faults at depth. With increasing displacement the folds are often cut by faults as

they propagate upwards into the cover. While the trishear kinematic model of fault-propagation folding appears to approximately represent

the geometric development of such structures, comparatively little is known of the mechanical controls on their development.

Here we present a 2D discrete element model of sedimentary cover deformation above a contractional fault in rigid basement. The

elements consist of a series of soft spheres that obey Newton’s equations of motion and initially interact with elastic forces under the

influence of gravity. Particles are bonded until the separation between them exceeds a defined breaking strain at which time the bond breaks,

simulated by the transition from repulsive–attractive forces to solely repulsive forces. The model is used to investigate the influence of

basement fault dip and sedimentary cover strength on the geometry of the folds developed and the rate of fault propagation. In all cases an

upward widening monocline occurs above the basement fault. We find that shallow basement fault dips produce homogenous thickening of

the monocline limb while steeper dips produce contemporaneous thinning and thickening within the monocline. Thinning and thickening

within the monocline are accommodated by a combination of small-scale faulting and folding. With decreasing cover strength, the zone of

deformation becomes wider, localization does not occur on a single fault and fold geometries resemble trishear fold profiles with low

propagation to slip ratios ( p/s , 1). In contrast, a stronger cover produces a narrower zone of deformation, localization on a single fault and

more rapid fault propagation (similar to trishear fold profiles where p/s , 2–3). The fault propagates into the cover at approximately the

same angle as the basement fault. The model reproduces well many of the features observed in analogue modelling and reported from outcrop

and seismic studies.

q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Fault-propagation folds, and the blind faults that they are

associated with, are of great interest from an academic point

of view, where they have recently been recognized as

extremely important for their seismic hazard potential (e.g.

Shaw and Shearer, 1999; Allmendinger and Shaw, 2000) and

for their importance in controlling stratigraphic architectures

in sedimentary basins (e.g. Ford et al., 1997; Gawthorpe et al.,

1997), and are also the location of many oil and gas traps (e.g.

Mitra and Mount, 1998). They are found in both extensional

and compressional settings, e.g. the Rhine Graben

(Laubscher, 1982), the Gulf of Suez (Gawthorpe et al.,

1997; Sharp et al., 2000), the North Sea (Withjack et al.,

1988), the Laramide orogen (e.g. Erslev and Mayborn, 1997),

the Bighorn and Uinta basins (Mitra and Mount, 1998) and

the Californian peninsular ranges (e.g. Allmendinger and

Shaw, 2000) (Fig. 1). Where a faulted rigid basement is

involved in the deformation, the folds are often called

‘forced’ folds (Stearns, 1978; Withjack et al., 1990).

Evidence from well-exposed folds with preserved growth

strata (e.g. Gawthorpe et al., 1997) and from analogue (e.g.

Withjack et al., 1990; Mitra and Islam, 1994) and numerical

modelling (Haneberg, 1992, 1993; Patton and Fletcher, 1995;

Cardozo et al., 2002; Johnson and Johnson, 2002a,b) has

indicated that many fault-propagation folds form as upward
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widening zones of distributed deformation (monoclines)

above discrete faults at depth. Field studies indicate that a

variety of mechanisms are responsible for the distributed

deformation including ductile flow, bedding slip, rigid

rotation and small extensional and thrust faults (e.g.

Gawthorpe et al., 1997; Sharp et al., 2000). Analogue

modelling studies have shown that with increasing displace-

ment (strain) the overlying fold may be cut by the fault as it

propagates upwards into the cover. It has been suggested by

Schlische (1995) and Hardy and McClay (1999) that the drag

folds of some workers are in fact breached extensional fault-

propagation folds. While these aspects of fault-propagation

folds are reasonably well understood and documented (e.g.

Erslev and Rogers, 1993; Schlische, 1995; Janecke et al.,

1998; Mitra and Mount, 1998), and the trishear kinematic

model appears to explain well their geometric development

and finite strain (Erslev, 1991; Hardy and Ford, 1997;

Allmendinger, 1998; Hardy and McClay, 1999; Zehnder and

Allmendinger, 2000; Allmendinger and Shaw, 2000; All-

mendinger et al., 2002), many aspects of their mechanics are

unclear, e.g. What controls the geometry of the triangular

shear zone? What influence does varying sedimentary cover

strength have upon fault propagation and fold development?

These and many other questions remain to be answered.

In an effort to better understand the development of such

structures we have developed a 2D discrete element model

(cf. Cundall and Strack, 1979) of sedimentary cover

deformation in response to contractional basement faulting.

The elements consist of a series of soft spheres which obey

Newton’s equations of motion and which initially interact

with elastic forces under the influence of gravity. Faulting is

simulated by the transition from repulsive–attractive forces

between elements to solely repulsive forces. The model is

used to investigate the influence of basement fault dip and

sedimentary cover strength on the geometry of the fault-

propagation folds that develop and the rate of fault

propagation. We find that shallow basement fault dips

produce thickening of the monocline limb while steeper dips

produce contemporaneous thinning and thickening of

stratigraphic units within the monocline. As the cover

strength decreases, the zone of deformation becomes wider

and fold geometries resemble trishear fold profiles with low

p/s ratios, typically ,1. In contrast, a stronger cover

produces a narrow zone of deformation and more rapid fault

propagation (similar to trishear fold profiles where p/s , 2–

3). The model produces many of the features seen both in

outcrop examples and analogue modelling studies. In

addition, we demonstrate that the trishear model is a good

approximate representation of the kinematic behaviour of

our models, and that the p/s ratio is a gross reflection of the

strength of the cover.

2. 2D discrete element model

2.1. Method

The discrete element model used here, a development on

that of Mora and Place (1993), is based on circular elements

that interact in pairs as if connected by breakable elastic

springs (Fig. 2a). The behaviour of the elements assumes

that the particles interact through a ‘repulsive–attractive’

force (Mora and Place, 1993) in which the resultant force,

Fig. 1. (a) Natural examples of basement-involved structures: the Willow creek and Rangely anticlines (after Mitra and Mount, 1998), and (b) an analogue

(clay) model of extensional fault-propagation folding (redrawn from Withjack et al., 1990)
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Fs, is given by:

FS ¼

Kðr 2 RÞ; r , ro; intact bond

Kðr 2 RÞ; r , R; broken bond

0; r $ R; broken bond

8>><
>>:

ð1Þ

Here, K is the elastic constant (spring strength) of the

bond, R is the equilibrium separation between the particles,

and r is the current separation between the particle pair.

Particles are bonded until the separation (r ) between them

exceeds a defined breaking strain, ro, at which time the bond

breaks. After this point, the particle pair experiences no

further attractive force and the bond is irreversibly broken.

However, if the two particles return to a compressive

contact (i.e. r , R ), a repulsive force acts between them.

Healing of bonds is not permissible in the present model. In

previous applications of this model, Mora and Place (1994)

showed that breaking strains for most materials are typically

much less than ,0.11, while the behaviour of particle

assemblies in plane-strain compression tests under varying

confining pressures and subject to different densities of pre-

existing fractures was investigated by Donzé et al. (1994).

The density of pre-existing fractures (or equivalently in our

model the value of breaking strain) was found to control the

intrinsic cohesion of the modelled material. Increasing the

amount of pre-existing fractures results in a transition from

brittle to ductile behaviour (see Donzé et al., 1994); we have

confirmed that a decrease in the breaking strain from 0.1 to

0.01 in our models produces an analogous transition from

brittle to ductile behaviour. In the model results reported

here we investigate the effect of a range of values (0.01–

0.1) of the breaking strain, with the breaking strain initially

set to be 0.05R.

The total elastic force, Fi,a, exerted on a particle is

obtained by summing the forces on each bond that links the

particle to its a neighbours, calculated by:

Fi;a ¼
X

j¼1;a

fi;j ð2Þ

in which fi,j is the elastic force experienced by particle i

from its neighbouring particle j. Additionally we include a

viscous damping term which attenuates the high frequency

dynamic features of the model, such as wave propagation

(Donzé et al , 1994) and thermal fluctuations. Gravitational

forces, Fg, acting on each element are calculated in the y

direction. Therefore the total force on any particle is given

by:

~F ¼ Fi;a 2 n_x þ Fg ð3Þ

where n represents the dynamic viscosity and _x is the

velocity of the particle.

At each discrete time step, the particles are advanced to

their new positions within the model by integrating their

equations of motion using Newtonian physics and a

velocity-Verlat based scheme (Allen and Tildesley, 1987).

The positions (x(t )) and velocities (_xðtÞ) of the particles at

the next discrete time step (t þ Dt ), are calculated from:

x t þ Dtð Þ ¼ xðtÞ þ D_xðtÞ þ
Dt2

2!
€xðtÞ

_x t þ Dtð Þ ¼ _xðtÞ þ
Dt

2
€xðtÞ þ €xðt þ DtÞð Þ €x ¼

FðtÞ

M

ð4Þ

In previous work, such discrete element simulations were

carried out using a regular hexagonal lattice (where a ¼ 6).

However, this imposed an unrealistic first-order geometric

control in which the well-defined 608 planes of weakness in

the lattice dominated the fault geometry of the resulting

structure (e.g. Donzé et al., 1994). To counteract the

influence of such isotropy, we generate a particle assembly

in which the particles are distributed randomly and which

consequently possesses no preferred planes of weakness (cf.

Antonellini and Pollard, 1995; Scott, 1996). In the assembly

used here four particle sizes of radii 0.5, 0.7, 0.9 and 1.0

lattice units are positioned at random in an enclosed

rectangular box and allowed to settle under gravity until

the void space is minimised. The equilibrium separation of a

particle pair (i,j ), Ri,j, in this random particle assembly is

now defined as the distance between a particle and its

neighbour (Fig. 2b).

2.2. Boundary and initial conditions

Here we apply this discrete element model to the

problem of fault-propagation folding in a contractional

setting in which the weaker cover is deformed in response to

movement of a strong, rigid basement block. Our model is

perhaps most appropriate to the re-activation of a pre-

existing basement fault overlain by a younger un-faulted

Fig. 2. Illustration of the discrete element technique used in the modelling

discussed in this paper: (a) relationship between a given particle i and its a

neighbours, particles are connected by breakable elastic springs, (b)

packing of particles of four different radii used in this paper.
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sedimentary sequence. We use this model to investigate the

influence of basement fault dip and sedimentary cover

strength on the geometry of the folds developed, and the

rates of fault propagation.

Within the basement we assume that there is a discrete

pre-existing fault whose tip initially lies at the basement–

cover interface, whereas in the cover there are no pre-

existing faults (Fig. 3). We use a random lattice of 5925

particles to define the cover sequence, and assume that 1

lattice unit is 250 m and that the rock mass has a density of

2500 g/cm3. Thus our particles represent the rock mass at a

scale larger than a typical outcrop but the particle assembly

is appropriate to major upper-crustal basement involved

fault-related folds (cf. Fig. 1). The basement is assumed to

be rigid (undeformable) and particles immediately over-

lying the basement are welded to it, as are particles adjacent

to the sidewalls. We do not consider the mechanical

properties of the basement material. The cover sequence is

initially ca. 40 units thick. The values of the spring constant,

K, breaking strain, and dynamic viscosity used are 20, 0.05R

and 3.0, respectively, in our standard model. The effect of

differing breaking strains is investigated later. The model is

run for a total of 1,056,000 time steps, with at each time step

0.000025 units of displacement occurring along the base-

ment fault, resulting in a total displacement of 26.4 units. As

slip occurs on the basement fault the overlying cover

sequence is deformed. The deformation is monitored with

respect to 10 approximately flat-lying, constant-thickness

marker beds; although we refer to these as ‘beds’ the cover

is mechanically isotropic and layers are for visualization

only.

3. Modelling of contractional fault-propagation folding

above rigid basement fault blocks

In this section some examples of the structural relation-

ships that are produced by the discrete element model

described above are presented. In particular, the influence of

two parameters on the geometries of the structures developed

will be investigated: the dip of the basement fault and the

mechanical strength of the sedimentary cover. For the initial

and boundary conditions discussed in Section 2 we will

present the sequential evolution of the following models: (a)

basement fault dips of 308, 458, 608 and 808 for a model with a

standard (0.05R ) breaking strain, and (b) a range of cover

breaking strains ranging from strong (0.10R ), through

standard (0.05R ), weak (0.025R ) and ultra-weak (0.01R )

for the 458 basement fault dip model. Each model discussed

takes approximately 90 h CPU time to run on a 40 processor

SGI Origin 2000 supercomputer with a peak performance of

16 Gflops.

3.1. Basic evolution of model and influence of basement

fault dip

Fig. 4 shows the sequential development of a model

which has a basement fault dip of 458 and a breaking strain

of 0.05R. This model will be used as the standard model

against which the other models will be compared. The

development of the model with increasing slip on the

basement fault is shown after 330,000, 660,000, 858,000

and 1,056,000 timesteps (Fig. 4a–d). It can be seen that an

upward-widening monocline forms above the discrete fault

in basement; the monocline is slightly asymmetric with

respect to the fault with somewhat more of the fold being

located in the future hanging wall of the fault. Through time

the limb of the monocline steepens and the fold becomes

tighter with the final surface dip reaching approximately 258

(Fig. 4d). Within the monocline the dip of beds increases

with depth and towards the fault tip. Individual beds (or

groups of beds) show thinning (extensional faulting) in

anticlinal regions and contemporaneous thickening (fold-

ing) in synclinal regions (Fig. 4d). As displacement

Fig. 3. Initial configuration of the standard model with a 458 fault in basement overlain by a cover which is initially unfaulted. A random lattice of 5925

particles is used. The values of the spring constant, K, and breaking strain used are 20 and 0.05R, respectively. The model is run for a total of 1,056,000 time

steps, with at each time step 0.000025 units of displacement occurring along the basement fault, resulting in a total displacement of 26.4 units. The deformation

is monitored with respect to 10 initially approximately flat-lying, constant-thickness beds. No vertical exaggeration.

E. Finch et al. / Journal of Structural Geology 25 (2003) 515–528518



increases, the basement fault propagates up-section into the

cover at an angle of approximately 458. In doing so it can be

seen to cut the overlying fold, producing a hanging wall

anticline and footwall syncline on either side of the fault

plane (Fig. 4d). These folds represent the breached

monocline and are not the result of ‘drag’ adjacent to the

fault plane (cf. Fig. 1a). Finally, however, the fault does not

propagate through the entire thickness of the sedimentary

cover.

Figs. 5–7 show the evolution of the standard model

described above but with basement fault dips of 308, 608 and

808. All other model parameters are identical to those used

in Fig. 4. In all models the structural evolution seen is

broadly similar, with an upward-widening monocline

developing initially but later steepening and being disrupted

by a combination of folding and faulting. However, there are

significant differences between the models that are a direct

result of changing basement fault dip: a decrease in

basement fault dip clearly leads to more homogenous

thickening (in the form of small-scale folding) of the

monocline limb and a small amount of extensional faulting

(Fig. 5). The zone of deformation is still broadly triangular

Fig. 4. Sequential evolution of the standard model with a basement fault dip of 458. Configuration of the model is shown after (a) 330,000, (b) 660,000, (c)

858,000, and (d) 1,056,000 time steps. Total displacement applied is 26.4 units, all other parameters as in Fig. 3. For detailed methodology see text.
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and focussed on the basement fault tip. In contrast, it can be

seen that the effect of increasing basement fault dip is to

increase the amount of extensional faulting within the

monocline particularly in the region of the anticlinal hinge

(compare Figs. 4d, 6d and 7d). This is particularly clear in

the model with a basement fault dip of 808 (Fig. 7) where

contemporaneous extensional faulting in the anticlinal

hinge region and folding in the thickening synclinal hinge

region occurs.

3.2. Influence of sedimentary cover strength

In this section we investigate the influence of sedimen-

tary cover strength on the evolution of folding and faulting

within the model. This is done by comparing a series of

models with weaker and stronger cover strengths (expressed

in terms of their breaking strain) to the standard 458 model

with a breaking strain of 0.05R discussed in the previous

section. Mora and Place (1994) showed that breaking strains

for most materials are typically much less than ,0.11 and

here we consider breaking strains in the range 0.01–0.10.

Fig. 8 shows the sequential evolution of a model with

weaker sedimentary cover (breaking strain reduced to

0.025R ) whereas Fig. 9 shows the evolution of a model

with stronger sedimentary cover (breaking strain increased

to 0.10R ). Fig. 10 shows the evolution of a model with an

ultra-weak sedimentary cover (breaking strain reduced to

0.01R ). These figures show that there are major differences

in the structures developed in the cover; examination of the

models indicates that weaker cover strength results in: (a) a

Fig. 5. Sequential evolution of a model with a basement fault dip of 308. Configuration of the model is shown after (a) 330,000, (b) 660,000, (c) 858,000, and

(d) 1,056,000 time steps. Total displacement applied is 26.4 units, all other parameters as in Fig. 3. For detailed methodology see text.
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broader upward-widening zone of deformation (monocline)

with shallower surface dips; (b) significant thinning and

thickening of stratigraphic units within the monocline, and;

(c) less discrete faulting or localization and limited fault

propagation (compare Figs. 8 and 10 with Fig. 9). These

features are particularly clear in Fig. 10 (the ultra-weak

model) where the geometry of the fold developed is

qualitatively similar to trishear fold geometries developed

when the propagation to slip ratio ( p/s ) is low (,1) (cf.

Erslev, 1991; Hardy and Ford, 1997). In contrast, strong

cover produces a narrower zone of deformation with steeper

surface dips, less marked thinning or thickening of a given

stratigraphic unit, localization on a single fault, and more

rapid fault propagation (qualitatively similar to trishear fold

profiles where p/s , 2–3: cf. Hardy and Ford, 1997).

Together, these effects result in the development of only

minor footwall synclines and hanging wall anticlines in the

models with ‘strong’ cover (Fig. 9).

The differences between strong and weak sedimentary

covers are illustrated by comparison of velocity vectors

resulting from different cover strengths for identical

displacements. We use the total displacement between

time steps 132,000 and 165,000 (0.825 units, ,3% total

displacement) to calculate the different velocity fields above

the basement fault for the ultra-weak and strong models

described above (Fig. 11a and b). The standard and weak

Fig. 6. Sequential evolution of a model with a basement fault dip of 608. Configuration of the model is shown after (a) 330,000, (b) 660,000, (c) 858,000, and

(d) 1,056,000 time steps. Total displacement applied is 26.4 units, all other parameters as in Fig. 3. For detailed methodology see text.
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models have velocity fields that are transitional between

the ultra-weak and strong examples. In both the ultra-

weak and strong cases there is a transition from broadly

rigid body translation in the hanging wall block above

the fault to zero displacement in the footwall block

(Fig. 11a and b). This transition occurs in an upward-

widening, broadly triangular, zone, which is attached to

the fault tip. The strong model shows a smooth decrease

in both the magnitude and orientation of the velocity

vectors from hanging wall to footwall; vectors are sub-

parallel to the fault in the hanging wall and decrease to

sub-parallel to the basement block in the footwall (Fig.

11b). The zone of transition has a boundary in the

hanging wall that dips antithetically to the main fault at

approximately 258. All of these features are very similar

to the velocity vectors which result from a simple

trishear kinematic model with a linear decrease in

velocity from top to bottom of the shear zone (see

Fig. 7. Sequential evolution of a model with a basement fault dip of 808. Configuration of the model is shown after (a) 330,000, (b) 660,000, (c) 858,000, and

(d) 1,056,000 time steps. Total displacement applied is 26.4 units, all other parameters as in Fig. 3.
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Zehnder and Allmendinger, 2000). The ultra-weak

model diverges from this simple pattern however; the

distribution of both magnitudes and orientations of

velocity vectors is much more complex (Fig. 11a),

suggesting that a simple trishear model would have

difficulty producing the geometry of this type of

structure. Finally, for comparison, velocity vectors for

the strong model between time steps 660,000 and

693,000 are shown in Fig. 11c. The effect that fault

tip propagation has on velocity vectors is clearly seen

here. It can also be seen that the zone of active

deformation migrates with, or is attached to, the fault

tip as it propagates into the cover.

4. Discussion

The discrete element model presented here attempts to

predict the broad-scale features and basic characteristics of

distributed deformation developed above blind contrac-

tional faults at depth. It is quite different in approach to

previous numerical studies of ‘forced’ folding using block

motion viscous or finite element mechanical models (e.g.

Patton and Fletcher, 1995; Niño et al., 1998; Cardozo et al.,

2002; Johnson and Johnson, 2002b). However, it reproduces

many of the features seen both in analogue models and

reported from outcrop and seismic studies (Withjack et al.,

1990; Mitra and Islam, 1994; Gawthorpe et al., 1997). In

Fig. 8. Sequential evolution of a model with a basement fault dip of 458 with breaking strain reduced to 0.025R. Configuration of the model is shown after

(a) 330,000, (b) 660,000, (c) 858,000, and (d) 1,056,000 time steps. Total displacement applied is 26.4 units, all other parameters as in Fig. 3.
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particular, the model successfully reproduces an upward-

widening monocline (fault-propagation fold) linked to the

discrete basement fault at depth. A key feature of our model,

particularly noticeable in models with a strong cover, is the

‘unforced’ propagation of the basement fault into the cover

stratigraphy. This has not been considered in previous

studies of forced folding using block motion viscous or finite

element mechanical models (e.g. Patton and Fletcher, 1995;

Johnson and Johnson, 2002a). This localization and

propagation of faults in the cover stratigraphy is a distinct

advantage of our modelling approach. In our experience

most forced fold structures experience fault-propagation,

unless the cover stratigraphy is very weak. The propagation

of the basement fault into the cover produces hanging wall

anticlines and footwall synclines adjacent to the fault plane.

In the strong models we see a transition from an early stage

of evolution dominated by folding to a later stage of

localization of deformation onto a single fault.

In an effort to better understand the controls on the

geometry of fault-propagation folds associated with base-

ment blocks, we have investigated two key parameters of

our model: (1) basement fault dip; and (2) sedimentary

cover strength. We find that shallow dipping basement

faults produce homogenous thickening of the monocline

limb while steeper faults produce contemporaneous exten-

sional and contractional structures within the sedimentary

cover. A more important effect is, that for a given fault dip,

we find that weak cover strength promotes more ‘ductile’

macroscopic behaviour, resulting in wide zones of defor-

mation and limited fault-propagation. Strong cover, on the

Fig. 9. Sequential evolution of a model with a basement fault dip of 458 with breaking strain increased to 0.10R. Configuration of the model is shown after

(a) 330,000, (b) 660,000, (c) 858,000, and (d) 1,056,000 time steps. Total displacement applied is 26.4 units, all other parameters as in Fig. 3.
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other hand, produces a narrow zone of deformation and

faster fault propagation. Thus the localization of faulting in

our models is a key feature of strong vs. weak cover

sequences. Thus we find that the propagation to slip ratio

( p/s ) is a gross reflection of the strength of the cover,

confirming the intuitive hypothesis of Allmendinger (1998)

that the p/s in the trishear model should reflect either

mechanics or overpressure.

The results presented here are very similar to those

predicted from the purely kinematic trishear model and its

derivatives (Erslev, 1991; Hardy and Ford, 1997; Zehnder

and Allmendinger, 2000). This is hardly surprising, in that

the kinematic model was developed to explain the

geometries of folds seen in sedimentary cover overlying

basement uplifts, but does confirm that the trishear model is

an adequate kinematic description of deformation in these

fault systems. By definition in our models the p/s must be

^ 1 as the basement block is completely undeformed. In

detail the discrete element model has more small-scale

faulting, bed discontinuities etc.; however, the ability of the

simple kinematic model to reproduce deeper geometric

configurations is encouraging. We do, however, find that

velocity vectors for our ultra-weak model depart signifi-

cantly from the simple assumptions built in to the trishear

kinematic model.

In this study we have not investigated the influence of

Fig. 10. Sequential evolution of a model with a basement fault dip of 458 with breaking strain decreased to 0.01R. Configuration of the model is shown after

(a) 330,000, (b) 660,000, (c) 858,000, and (d) 1,056,000 time steps. Total displacement applied is 26.4 units, all other parameters as in Fig. 3.
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strength variations (anisotropy) within the cover on the

nature of fold development and fault-propagation. We

would expect that mechanically-layered cover stratigraphy

would promote the development of more kink-like geome-

tries (cf. Narr and Suppe, 1993; Niño et al., 1998; Johnson

and Johnson, 2002b). In principle, particle sizes and inter-

particle bonding relationships of the system can be changed

to investigate the effect of interlayering of weaker/stronger

beds and bed-parallel slip on the relationship between

faulting and folding. There are, however, computational

limitations on the number of particles that can be used to

describe a cover sequence. In addition, linkage with other

faults both in the plane of tectonic transport and perpen-

dicular to it (e.g. Burbank et al., 1999) is a key process by

which a fault tip line propagates. Such interaction and

linkage is not presently included in the modelling scheme.

Finally, we have concentrated upon the structures seen in

strata laid down before deformation occurs. Growth strata,

when present (e.g. Gawthorpe et al., 1997), allow further

constraints to be placed upon the evolution of contractional

and extensional fault-propagation folds (e.g. Ford et al.,

1997; Strayer et al., 2002). The addition of growth strata to

the discrete element model described herein is a straight-

forward task and is the subject of ongoing research.

Fig. 11. Velocity vectors for the central part of the (a) ultra-weak model and (b) the strong model calculated for time steps 132,000 and 165,000. (c) Velocity

vectors for the central part of the strong model calculated for time steps 660,000 and 693,000. Velocity vectors are exaggerated by a factor of 10. Approximate

transition zones between hanging wall and footwall velocity vectors are indicated in grey.
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5. Conclusions

A 2D discrete element model of contractional fault-

propagation folding has been developed. The model links

discrete faulting at depth to deformation of an initially

unfaulted cover stratigraphy. The model reproduces many

of the features seen both in analogue models and reported

from outcrop and seismic studies (Withjack et al., 1990;

Stewart et al., 1996; Gawthorpe et al., 1997). In particular

the model successfully reproduces an upward-widening

monocline (fault-propagation fold) linked to a discrete fault

at depth. The basement fault propagates into the cover

stratigraphy in strong models as a result of localization and

at approximately the same angle as the basement fault.

Fault-propagation produces hanging wall-synclines and

footwall-anticlines adjacent to the fault plane which

represent a breached monocline rather than drag against

the fault plane. We have investigated the effect of the dip of

the basement fault on the model, and the strength of the

cover stratigraphic sequence. We find that shallow basement

fault dips produce homogenous thickening of the monocline

limb while steeper fault dips produce contemporaneous

extensional and contractional structures within the sedi-

mentary cover. Weak cover strength promotes cover

flowage, wide zones of deformation and limited fault-

propagation, whereas a strong cover produces a narrow zone

of deformation and faster fault propagation. Thus, high p/s

ratios in trishear models correspond to strong cover

sequences whereas low p/s ratios are indicative of a weak

cover. Velocity vectors in our models are similar to those

predicted by the trishear kinematic model and confirm its

utility in modelling the geometry of such structures.

Acknowledgments

This work has been in part funded by a University of

Manchester grant to Hardy and a NERC grant to Gawthorpe.

Supercomputing support from The University of Man-

chester CSAR is gratefully acknowledged. Reviews by

Rick Allmendinger and Luther Strayer have greatly

improved the content and focus of this paper. Thanks

must also go to John McCloskey of the University of Ulster

for his support during EF’s development of the discrete

element code. This work has benefited greatly from

discussions with many colleagues; however, a special

thanks must go to Rick Allmendinger for his open exchange

of ideas, preprints and code on trishear kinematics and

mechanics.

References

Allen, M.P., Tildesley, D.J., 1987. Computer Simulation of Liquids, Oxford

Science Publications, Oxford.

Allmendinger, R.W., 1998. Inverse and forward numerical modeling of

trishear fault-propagation folds. Tectonics 17, 640–656.

Allmendinger, R.W., Shaw, J., 2000. Estimation of fault propagation

distance from fold shape: Implications for earthquake hazard assess-

ment. Geology 28, 1099–1102.

Allmendinger, R.W., Zapata, T.R., Manceda, R., Dzelalija, F., 2002.

Trishear kinematic modeling of structures with examples from the

Neuquén Basin, Argentina. In: McClay, K.R. (Ed.), AAPG Thrust

Tectonics Conference. American Association of Petroleum Geologists,

Special Publication, in press.

Antonellini, M.A., Pollard, D.D., 1995. Distinct element modeling of

deformation bands in sandstone. Journal of Structural Geology 17,

1165–1182.

Burbank, D.W., McLean, J.K., Bullen, M., Abdrakhmatov, K.Y., Miller,

M.M., 1999. Partitioning of intermontane basins by thrust-related

folding, Tien Shan, Kyrgyzstan. Basin Research 11, 75–92.

Cardozo, N., Bawa-Bhalla, K., Zehnder, A., Allmendinger, R.W., 2002.

Mechanical models of fault propagation folds and comparison to the

trishear kinematic model. Journal of Structural Geology, in press.

Cundall, P.A., Strack, O.D.L., 1979. A discrete numerical model for

granular assemblies. Géotechnique 29, 47–65.
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